
In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance C μ F across a 200 V,
50 Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V. Assume
that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-
angle (in degrees) between the current and the supply voltage is $arphi$. Assume, $\pi\sqrt{3}\approx$ 5.(JEE ADVANCED 2021)
The value of C in
The value of C is

Now,
$$V_{\text{source}} = i_{\text{source}} Z$$

$$\Rightarrow 200 = (5)Z$$

$$\Rightarrow [Z = 40 \Omega]$$

Now,
$$Z = \int R^2 + X_c^2$$

 $\Rightarrow 40 = \int 400 + X_c^2$
 $\Rightarrow X_c^2 = 1200$
 $\Rightarrow 1 = 1200$
 $\Rightarrow 1 = 20\sqrt{3}$
 $\Rightarrow C$

$$\begin{array}{c} 100\pi \times 20\sqrt{3} \\ \text{On taking } \sqrt{3}\pi \approx 5) \\ 7 \quad \left[C = 100\mu\text{F}\right] \end{array}$$

Also,
$$\cos \phi = R$$